The general solution of this ordinary linear differential equation is
$$W=\frac Rc+a\mathrm e^{ct}\;.$$
Thus, if the initial workload is above $R/c$, work will pile up exponentially ($a\gt0$), whereas if the initial workload is below $R/c$, it will decrease exponentially ($a\lt0$), but the rate won't exceed $R$ before the work becomes $0$. The time $T$ to finish as a function of the initial workload is given by
$$W_0=W(t=0)=\frac Rc+a\;,$$
$$a=W_0-\frac Rc\;,$$
$$0=W(t=T)=\frac Rc+a\mathrm e^{cT}=\frac Rc+\left(W_0-\frac Rc\right)\mathrm e^{cT}\;,$$
$$\left(\frac Rc-W_0\right)\mathrm e^{cT}=\frac Rc\;,$$
$$\mathrm e^{cT}=\frac{\frac Rc}{\frac Rc-W_0}=\frac{1}{1-\frac{cW_0}R}\;,$$
$$cT=\log\frac{1}{1-\frac{cW_0}R}=-\log\left(1-\frac{cW_0}R\right)\;,$$
$$T=-\frac{\log\left(1-\frac{cW_0}R\right)}c\;,$$
where $\log$ denotes the natural logarithm.