Start by proving that elements of $U$ commute with elements of $V$. Take $a\in U$ and $b\in V$ and prove that: $$[a,b]=aba^{-1}b^{-1} = 1$$ (Hint: put parentheses in two different ways in that expression).
This will show that $W\simeq U\times V$.
Next, you will have to prove that $W$ is a subgroup of $G$ and that $W\lhd G$.