It's just a continuous version of the discrete calculation. The discrete version is the (infinite series) sum
$$ \sum_{i = 0}^\infty S^i \cdot bp $$
adding up every (chance of survival to season $i$) x (breeding probability given that survival).
Making this continuous converts the equation to
$$ \begin{split} & \int_0^\infty bp \cdot S^i \, di \\\ = \enspace & bp \int e^{i \ln S} \, di \end{split} $$
integrating gives
$$ \left.bp \cdot \frac{e^{i \, \ln(S)} }{\ln(S)} \right\vert_{0}^{\infty} $$
Evaluating gives $$ = \frac{bp \cdot e^{-\infty} }{\ln(S)} - \frac{bp \cdot e^{0} }{\ln(S)} $$ (remembering that $0 <= S < 1$, so $\ln(S) < 0$)
$$ = bp \cdot 0 - bp \cdot \frac{1}{\ln(S)} = bp \cdot \left(0 - \frac{1}{\ln(S)}\right) = bp \cdot \frac{-1}{\ln(S)} $$