Artificial intelligent assistant

Let $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian. Let $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian. Here > Show that the quotient of the Heisenberg Group with its center is abelian. also it is given as an exercise. I am new in this matrix algebra field. I was trying to prove the first part using elementary matrix but it does not work out. May be, I am wrong at some point any help would be appreciated.

Let$$\begin{bmatrix}1&a&c\\\0&1&b\\\0&0&1\end{bmatrix}\in Z(H).\tag1$$Then, if $x,y,z\in\mathbb{R}$, then$$\begin{bmatrix}1&a&c\\\0&1&b\\\0&0&1\end{bmatrix}^{-1}\begin{bmatrix}1&x&z\\\0&1&y\\\0&0&1\end{bmatrix}\begin{bmatrix}1&a&c\\\0&1&b\\\0&0&1\end{bmatrix}=\begin{bmatrix}1&x&z\\\0&1&y\\\0&0&1\end{bmatrix}.$$But$$\begin{bmatrix}1&a&c\\\0&1&b\\\0&0&1\end{bmatrix}^{-1}\begin{bmatrix}1&x&z\\\0&1&y\\\0&0&1\end{bmatrix}\begin{bmatrix}1&a&c\\\0&1&b\\\0&0&1\end{bmatrix}=\begin{bmatrix}1&x&ay-bx+z\\\0&1&y\\\0&0&1\end{bmatrix}.$$Therefore, $a=b=0$ if and only if $(1)$ holds. So, now you know $Z(H)$. Can you take it from here?

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy ca422c1a0072a53cac4ae6b24d0d2884