For the case where $A$ is diagonalisable, we can consider the eigendecomposition of matrix $A$, as $U\Lambda U^{-1}$, where matrix $\Lambda$ is a diagonal matrix whose entries are the eigenvalues of $A$.
We thus have (the coloured parts below is the property that $\det{(AB)}=\det(BA)$) $$\begin{align}\det (I_n-2itA)&=\det(UU^{-1}-2U\Lambda U^{-1})\\\&=\det( \color{red}{U}\color{blue}{(I-2it\Lambda)U^{-1}})\\\&=\det( \color{blue}{(I-2it\Lambda)U^{-1}}\color{red}{U})\\\&=\det(I-2it\Lambda)\\\&=\prod_{1=i}^n(1-2it\lambda_i)\end{align}$$