In convex analysis, maybe the most natural or best way to smooth a convex function $f$ is to use the Moreau-Yosida regularization of $f$:
\begin{equation} f^{(\mu)}(x) = \inf_u f(u) + \frac{1}{2\mu} \|u - x\|_2^2. \end{equation}
This is discussed in lecture 15 ("Multiplier methods") of Vandenberghe's 236c notes.
If $f(x) = |x|$ for all $x \in \mathbb R$, and $\mu > 0$, then \begin{equation} f^{(\mu)}(x) = \begin{cases} |x| - \frac{\mu}{2} \quad \text{if } |x| > \mu \\\ \frac{x^2}{2\mu} \quad \text{otherwise}. \end{cases} \end{equation}