Artificial intelligent assistant

Example of a saturated measure We know that every sigma finiye measure is saturated but converse is not true.. To prove the converse part , I need a counter example . Can anyone suggest an example of a saturated measure which is not sigma finite ?

Take the counting measure on $(\Bbb R, 2^{\Bbb R})$. It is not $\sigma$-finite, but it is saturated (since any set is measurable).

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy c67f0be56bd03ec920beed6acebda5b0