Let $P(H) = p = 1 - q = 1- P(T)$.
Let $X$ be a random variable indicating the flip when $H$ occurs.
$$\sum_{i=1}^{\infty}P(X=i) = \sum_{i=1}^{\infty}q^{i-1}p = \frac{p}{1-q} = \frac{p}{p} = 1$$
Let $P(H) = p = 1 - q = 1- P(T)$.
Let $X$ be a random variable indicating the flip when $H$ occurs.
$$\sum_{i=1}^{\infty}P(X=i) = \sum_{i=1}^{\infty}q^{i-1}p = \frac{p}{1-q} = \frac{p}{p} = 1$$