Suppose that $f:\mathbb{N}\to A$ is a bijection, where $f(n)=x$ for some $n\in\mathbb{N}$.
Define $$ g(k)=\left\\{\begin{array}{} f(k)&\text{if }k\lt n\\\ f(k+1)&\text{if }k\ge n\\\ \end{array} \right. $$ Then $g:\mathbb{N}\to A-\\{x\\}$ is a bijection.