For $c=0$ it's obvious. If $c>0$ $$\lim_{n\to\infty }\frac{2\pi n}{c}\cos\left(c\frac{2\pi n}{c}\right)=+\infty $$ and $$\lim_{n\to\infty }\frac{\pi+2n\pi}{c}\cos\left(c\frac{\pi+2\pi n}{c}\right)=-\infty $$ therefore it's not periodic. For $c<0$ you the proof goes the same.