For b) you can use Wilson's theorem, and the finite geometric series, i.e., $$ \epsilon=\frac{p}{(1-\zeta)^{p-1}}=\prod_{i=1}^{p-1}\frac{1-\zeta^i}{1-\zeta}=\prod_{i=1}^{p-1}\sum_{j=0}^{i-1}\zeta^j \equiv (p-1)!\equiv -1 \mod (1-\zeta) $$
For b) you can use Wilson's theorem, and the finite geometric series, i.e., $$ \epsilon=\frac{p}{(1-\zeta)^{p-1}}=\prod_{i=1}^{p-1}\frac{1-\zeta^i}{1-\zeta}=\prod_{i=1}^{p-1}\sum_{j=0}^{i-1}\zeta^j \equiv (p-1)!\equiv -1 \mod (1-\zeta) $$