The decomposition is not unique without further conditions. You can add linear terms to $\phi$ and $\mathbf G$ that yield constant contributions to $\mathbf H$ that cancel:
$$ \begin{eqnarray} \phi &\to& \phi + z\;, \\\ \
abla\phi &\to& \
abla\phi + \mathbf e_z\;, \\\ \mathbf G &\to& \mathbf G + \frac{1}{2}(y\mathbf e_x-x\mathbf e_y)\;, \\\ \
abla\times\mathbf G &\to& \
abla\times\mathbf G - \mathbf e_z\;. \end{eqnarray} $$
However, I think that if you impose suitable conditions that the fields decay at infinity, the decomposition should be unique.