Let $M$ denote the Moore-Penrose inverse of $A$, and for ease of typing let $$dA = \frac{dA}{dx}$$ The function you are interested in can be written $$f = AM$$ The derivative of $M$ (in a direction of constant rank) is a well known result $$dM = -M(dA)M + MM^*(dA^*)(I-AM) + (I-MA)(dA^*)M^*M$$ Therefore the derivative of your function is $$\eqalign{ df &= d(AM) \cr &= (dA)M + A(dM) \cr &= (dA)M -AM(dA)M + M^*(dA^*)(I-AM) + 0 \cr &= (I-AM)(dA)M + \Big((I-AM)(dA)M\Big)^* \cr }$$