As Sasha suggested, let $$\begin{align*} g(x)&=\sum_{k=0}^n \mathbb{P}(S_n=k)x^k\\\ &=\sum_{k=0}^n\binom{n}k p^k(1-p)^{n-k}x^k\\\ &=\sum_{k=0}^n\binom{n}k(px)^k(1-p)^{n-k}\\\ &=(px+1-p)^n \end{align*}$$ by the binomial theorem. Then $$g\;'(x)=\sum_{k=0}^n k\mathbb{P}(S_n=k)x^{k-1}\;, $$
and $$g\;''(x)=\sum_{k=0}^n k(k-1)\mathbb{P}(S_n=k)x^{k-2}\;,$$
so $$g\;''(1)=\sum_{k=0}^n k(k-1)\mathbb{P}(S_n=k)=\mathbb{E}(X(X-1))$$ by definition. On the other hand, you know that $g(x)=p(px+1-p)^n$, so you can calculate $g\;''(1)$ explicitly with a little elementary calculus.