Artificial intelligent assistant

Probability of rainy days I have this problem: Probability that it rains during one day is $0.4$ and probability that is does not is $0.6$. a) What is a distribution of $X$ - number of rainy days after the day without rain? b) What is a probability that we have two consecutive rainy days? Is this the way how to solve a): If there is one rainy day then probability is: $P = \frac{0,4 \times 0,6}{0,6}$ If there are two rainy days then probability is: $P = \frac{0,4 \times 0,6^{2}}{0,6}$, etc... Thank you!

We assume independence, which is **very** unreasonable. But without some assumption we cannot solve the problem.

The random variable $X$ is the number of consecutive rainy days after a rainless day. So $X$ takes on values $0,1,2,3,\dots$.

The probability that $X=0$ is $0.6$.

For $X=1$, we need RN (rain, then not rain). The probability of this is $(0.4)(0.6)$.

For $X=2$, we need RRN. The probability of this is $(0.4)^2(0.6)$.

And so on.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy c2fddf8e1fe30245d343cc2db3932633