Taken directly from Wikipedia, the Wright Omega function, $\omega(z)$, is defined with respect to the Lambert W function, $W_k(z)$, for complex argument, $z$, as:
$$\omega(z) = W_{\big \lceil \frac{\mathrm{Im}(z) - \pi}{2 \pi} \big \rceil}(e^z) \Longleftrightarrow W_k(z) = \omega(\ln(z) + 2 \pi i k)$$
So, assuming that your parameter $A>0$ and is real, your function can be rewritten and simplified as:
$$-A W_{-1}\left(\frac{-e^{-1/A}}{A}\right)-1$$
or `-A*lambertw(-1,-exp(-1/A)/A)-1` in Matlab.
Ultimately, the lesser-known Wright Omega function is a simpler function than the Lambert W function. You can evaluate it numerically in Matlab with my `wrightOmegaq`, which is available on Github and on the MathWorks File Exchange.