If $x \in \ker A$ then since $A^T(Ax) = A^T 0 = 0 $ we see that $x \in \ker A^T A$.
If $x \in \ker A^T A$, then $A^T A x = 0$ and so $x^T A^T A x = (Ax)^T (Ax) = \|Ax\|^2 = 0$ and so $x \in \ker A$.
If $x \in \ker A$ then since $A^T(Ax) = A^T 0 = 0 $ we see that $x \in \ker A^T A$.
If $x \in \ker A^T A$, then $A^T A x = 0$ and so $x^T A^T A x = (Ax)^T (Ax) = \|Ax\|^2 = 0$ and so $x \in \ker A$.