No.
Take $f(x) = xe^{-x^2}$. Clearly, $f(0) = 0$.
The integral function of $f(x)$ is:
$$G(x) = \int_{-\infty}^{x} te^{-t^2} dt = \left.-\frac{1}{2}e^{-t^2}\right|_{t=-\infty}^{t=x} = -\frac{1}{2}e^{-x^2}$$
In this case, $G(0) = -\frac{1}{2} \
eq 0.$
No.
Take $f(x) = xe^{-x^2}$. Clearly, $f(0) = 0$.
The integral function of $f(x)$ is:
$$G(x) = \int_{-\infty}^{x} te^{-t^2} dt = \left.-\frac{1}{2}e^{-t^2}\right|_{t=-\infty}^{t=x} = -\frac{1}{2}e^{-x^2}$$
In this case, $G(0) = -\frac{1}{2} \
eq 0.$