Here $$g=\text{diag}\,(1,-1)=\begin{bmatrix}1&0\\\0&-1\end{bmatrix}.$$ You can easily check that $$ M_2(A)^{(0)}=\\{a:\ gag=a\\},\ \ \ \ M_2(A)^{(1)}=\\{a:\ gag=-a\\}. $$
The standard even grading on $A\otimes\mathbb K$ is obtained by doing the above on $M_2(A\otimes\mathbb K)$ (diagonal matrices and matrices with diagonal zero). How it looks like depends on how you write the isomorphism $A\otimes\mathbb K\simeq M_2(A\otimes\mathbb K)$.
If we write $\mathbb K$ in terms of the canonical matrix units $\\{E_{kj}\\}$ and realize the isomorphism by decomposing $H$ as $(\sum E_{2k,2k})H\oplus (\sum E_{2k+1,2k+1})H$, then $$ A\otimes\mathbb K^{(0)}=\\{\sum_{k,j}a_{kj}\otimes E_{kj}:\ a_{kj}\in A,\ \ a_{kj}=0\ \text{ if }k+j\text{ is odd }\\}, $$ $$ A\otimes\mathbb K^{(1)}=\\{\sum_{k,j}a_{kj}\otimes E_{kj}:\ a_{kj}\in A,\ \ a_{kj}=0\ \text{ if }k+j\text{ is even }\\}, $$