If the angle between $\mathbf{\ell}$ and $\mathbf{v}$ is less than a right angle then you want
$$ \mathbf{d=\ell-v} $$
otherwise you want
$$ \mathbf{d=-\ell-v} $$
This can be achieved in one equation with
$$ \mathbf{d=\left(\frac{\ell\cdot v}{\vert \ell\cdot v\vert}\right)\ell-v} $$
If you only wish to "nudge" $\mathbf{v}$ in the proper direction you can select a constant $0<\alpha<1$ and use
$$ \mathbf{d}=\alpha\left[\mathbf{\left(\frac{\ell\cdot v}{\vert \ell\cdot v\vert}\right)\ell-v}\right] $$
If the angle between $\mathbf{\ell}$ and $\mathbf{v}$ is a right angle, then you will have
$$ \mathbf{d}=-\alpha\mathbf{v}$$
![Subtraction of vectors](