Given side lengths $a,b$ and $c$, you can use cosine rule to easily find all the angles.
$$\cos \mathrm A= \frac{b^2+c^2-a^2}{2bc}$$
Similarly, $$\cos \mathrm B=\frac{a^2+c^2-b^2}{2ac}$$
$$\cos \mathrm C=\frac{a^2+b^2-c^2}{2ab}$$
Given side lengths $a,b$ and $c$, you can use cosine rule to easily find all the angles.
$$\cos \mathrm A= \frac{b^2+c^2-a^2}{2bc}$$
Similarly, $$\cos \mathrm B=\frac{a^2+c^2-b^2}{2ac}$$
$$\cos \mathrm C=\frac{a^2+b^2-c^2}{2ab}$$