Just like in the gradient descent method, you want to stop when the norm of the gradient is sufficiently small, in the projected gradient method, you want to stop when the norm of the projected gradient is sufficiently small. Suppose the projected gradient is zero. Geometrically, that means that the negative gradient lies in the normal cone to the feasible set. If you had linear equality constraints only, it would mean that the gradient vector is orthogonal to the feasible set. In other words, it's locally impossible to find a descent direction, and you have first-order optimality.