We don't even need a product rule. We have \begin{align*} g(x) = \prod_{i=0}^{n}\ln(y_i^{x-1}) = (x-1)^{n+1}\prod_{i=1}^{n}\ln(y_i) \end{align*} And so \begin{align*} \frac{d}{dx} g(x) = (n+1)(x-1)^{n}\prod_{i=0}^{n}\ln(y_i) \end{align*}
We don't even need a product rule. We have \begin{align*} g(x) = \prod_{i=0}^{n}\ln(y_i^{x-1}) = (x-1)^{n+1}\prod_{i=1}^{n}\ln(y_i) \end{align*} And so \begin{align*} \frac{d}{dx} g(x) = (n+1)(x-1)^{n}\prod_{i=0}^{n}\ln(y_i) \end{align*}