$AB = BC = CD = AD = \sqrt {625} = 25$
$CD\times \text{alt rhombus} = 500$ so $\text {alt rhombus} = 20$.
Let the point where $BC$ intersects $FE$ be $X$ and consider the side of the triangle $XCE$.
$XC = 20$ and $CE = CD = 25$.
Can you finish it from there?
> $XE = \sqrt {CE^2 - XC^2} =\sqrt{25^2 - 20^2} = 15$
.
> Area of $\triangle XCE = \frac 12 20*15 =150$
.
> Area of the white area within the trapezoid $DFXC$ is $500 - 150=350$.
.
> Area of the shaded area is $625 - 350 = 275$
.
> $55x = 275$
.
> $x = \frac {275}{55} = 5$