Let $f$ be differentiable at $ \vec{x}$ and put $g(h):=f(\vec{x}+h \vec{u})$. Then $D_{\vec{u}}f(\vec{x})=g'(0)$. Now compute $g'(0)$ with the chain rule.
Let $f$ be differentiable at $ \vec{x}$ and put $g(h):=f(\vec{x}+h \vec{u})$. Then $D_{\vec{u}}f(\vec{x})=g'(0)$. Now compute $g'(0)$ with the chain rule.