**Hint**
The prenex normal forms are trivial; thus we can go directly to the "elimination" of $\exists$.
From _Premise 1_ we get :
> $P(b) \land \lnot Q(b,a)$
and from _Premise 2_ we get :
> $P(c) \land [\lnot P(y) \lor \lnot R(c,y) \lor Q(y,a)]$.
Thus, we have 4 _clauses_ :
1) $P(b)$
2) $\lnot Q(b,a)$
3) $P(c)$
4) $\lnot P(y) \lor \lnot R(c,y) \lor Q(y,a)$.
Then we add the negation of the _Conclusion_ , which is again a _clause_ :
6) $\lnot P(x) \lor \lnot P(y) \lor R(x, y)$.
Now we have to perform Resolution, starting from 1) and 3) with the unifiers :
> $b \to y$ and $c \to x$.