Since $e_j\sim Exp(1)$, the density of $e_j$ is $f\left( x \right) = e^{-x}$ if $x\ge 0$ and $f(x)=0$ if $x<0$. Then $$E\left( {{e^{it{e_j}}}} \right) = \int\limits_{ - \infty }^\infty {{e^{itx}}f\left( x \right)dx} = \int\limits_0^\infty {{e^{itx}}{e^{ - x}}dx} = \int\limits_0^\infty {{e^{\left( {it - 1} \right)x}}dx} = \frac{1} {{1 - it}}.$$