> see that, $\color{blue}{\frac{3z-2}{z^2 - 2iz} = -\frac{i}{z}+\frac{3+i}{z - 2i}}$ By Cauchy formula we get $$\oint_C \frac{3z-2}{z^2 - 2iz} \,dz=-i\oint_C \frac{dz}{z} \,dz +(3+i)\oint_C \frac{dz}{z - 2i} =\color{red}{2i\pi(-i+3+i)=6i\pi}$$
> see that, $\color{blue}{\frac{3z-2}{z^2 - 2iz} = -\frac{i}{z}+\frac{3+i}{z - 2i}}$ By Cauchy formula we get $$\oint_C \frac{3z-2}{z^2 - 2iz} \,dz=-i\oint_C \frac{dz}{z} \,dz +(3+i)\oint_C \frac{dz}{z - 2i} =\color{red}{2i\pi(-i+3+i)=6i\pi}$$