Note that $eq$ itself equalize $f$ and $g$; thus if $eq\circ v=eq\circ w$, you can define $m=eq\circ v$, and then $$f\circ m=f\circ eq\circ v=g\circ eq \circ v=g\circ m.$$ The universal property implies that there must be a unique $u$ such that $eq\circ u=m$; but both $v$ and $w$ have this property, thus $u=v=w$.