By Stokes' Theorem
$$\oint_{C}\mathbf{F} \cdot d\mathbf{r} = \int_{S} (\
abla \times \mathbf{F}) \cdot \mathbf{n}dS$$
where the surface $S$ is defined by $z = h(x,y) = \sqrt{1-x^2-y^2}$ with $-1\leq x \leq 1$ and $-\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2}.$
We have $\mathbf{F}=(1,-2x,3)$ and
$$\
abla \times \mathbf{F} = (0,0,-2),$$
and the outward unit normal vector at $S$ is
$$\mathbf{n}=\frac{(-h_x,-h_y,1)}{\sqrt{1+h_x^2 + h_y^2}}.$$
The differential element of surface area is
$$dS={\sqrt{1+h_x^2 + h_y^2}}dxdy.$$
Hence,
$$\int_{S} (\
abla \times \mathbf{F}) \cdot \mathbf{n}dS = 2\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}}(-2)dxdy= -2\pi$$