For the triangle inequality, you have to prove: $$\lvert x+x'\rvert+2\sqrt{(y+y')^2+(z+z')^2}\leq\lvert x\rvert+2\sqrt{y^2+z^2}+\lvert x'\rvert+2\sqrt{y'^2+z'^2}$$ This amounts to proving: \begin{align*} \sqrt{(y+y')^2+(z+z')^2}&\leq \sqrt{y^2+z^2}+\sqrt{y'^2+z'^2}\\\ \iff(y+y')^2+(z+z')^2&\leq y^2+z^2+y'^2+z'^2+2 \sqrt{y^2+z^2}\sqrt{y'^2+z'^2}\\\ \iff\phantom{(y+y')^2+(z+z')^2}\llap{yy'+zz'}&\leq\sqrt{y^2+z^2}\sqrt{y'^2+z'^2} \end{align*} This is simply _Cauchy-Schwarz_ 's inequality.