These things can be confusing, but this specific case is quite simple. We impose the substitutions $$ x=-X, \qquad t=-s, $$ which imply $$ \frac{d}{dt}=-\frac{d}{ds},\qquad \frac{d^2}{dt^2}=\frac{d^2}{ds^2}, $$ so that $$ \frac{d^2x}{dt^2}+\lambda \frac{dx}{dt}=-\frac{d^2X}{ds^2}+\lambda\frac{dX}{ds}, $$ and $$ x-x^3=-(X-X^3).$$ Thus, $\frac{d^2x}{dt^2}+\lambda \frac{dx}{dt}=x-x^3$ if and only if $$\frac{d^2X}{ds^2}-\lambda \frac{dX}{ds}=X-X^3.$$