If $n!|n^ n$ then $n-1$ divides $n^n$.
$n$ and $n-1$ are coprime, it follows $n-1$ and $n^n$ are coprime, it follows $n-1$ does not divide $n^n$ unless $n-1=1$ which is not true as $n\geq 3$
If $n!|n^ n$ then $n-1$ divides $n^n$.
$n$ and $n-1$ are coprime, it follows $n-1$ and $n^n$ are coprime, it follows $n-1$ does not divide $n^n$ unless $n-1=1$ which is not true as $n\geq 3$