Assume $A\
otin B$, $B\
otin A$ and $A\
eq B$. By symmetry we can assume that there is $C_1\in B\setminus A$.
Then $C_1\subset B$, $A\
otin C_1$, $C_1\
otin A$ and $C_1\
eq A$.
Repeat the same argument with $A$ and $C_1$ to get a $C_2\in$ either $A\setminus C_1$ or $C_1\setminus A$.
You find an infinite sequence of $C_i$ belonging to either $B$ or $A$. This is impossible due to the well-ordering. Therefore $A\
otin B$, $B\
otin A$ and $A\
eq B$ is false.