Let $d=\det A = \det(A^t)$. Then
$$cof(A)^t = d \cdot A^{-1} =d \cdot \big( (A^{-1})^t\big)^t = \big( d \cdot( A^{-1})^t \big)^t = \big(d \cdot( A^t)^{-1}\big)^t = cof(A^t)$$
In that fourth equality, we used the fact that $(A^{-1})^t=(A^t)^{-1}$.
Let $d=\det A = \det(A^t)$. Then
$$cof(A)^t = d \cdot A^{-1} =d \cdot \big( (A^{-1})^t\big)^t = \big( d \cdot( A^{-1})^t \big)^t = \big(d \cdot( A^t)^{-1}\big)^t = cof(A^t)$$
In that fourth equality, we used the fact that $(A^{-1})^t=(A^t)^{-1}$.