Take $E = [-1,1]$, and $\mathcal D = (-2, 2)$. Let $$ f(x) = \begin{cases} 0 &\text{if $x = 0$},\\\ x^2\sin(x^{-3}) &\text{else.}\end{cases}$$ Then $f$ is trivially bounded on $\mathcal D$. Also, the derivative of $f$ exists on all of $\mathcal D$: we have $$ f'(x) = \begin{cases} 0 &\text{if $x = 0$},\\\ 2x\sin(x^{-3}) - 3x^{-2}\cos(x^{-3}) &\text{else,}\end{cases}$$ which clearly is not bounded near $x = 0$.