Artificial intelligent assistant

Maximum and minimum absolute of a polynomial in interval I want to find the maximum value and minimum value absolute value of this polynomial $p(x) = -4x^4+12x^3+52x^2-108x-143$ in the interval $[-1.7,4.0]$ I don't know if i am doing it right. I proceed like this: $$p'(x) = -16x^3+36x^2+104x-108=0 $$ $$x_1=-2.1724, x_2=0.87620, x_3=3.5462$$ So i input the function in R code and i get this points: pol<-function(x){ -4*x^4+12*x^3+52*x^2-108*x-143 } pol(-2.1724) pol(0.87620) pol(3.5462) pol(-1.7) pol(4.0) > pol(-2.1724) [1] 124.9089 > pol(0.87620) [1] -191.9933 > pol(3.5462) [1] 30.50625 > pol(-1.7) [1] 98.5156 > pol(4.0) [1] 1 So, I have that the absolute minimum is $0.87620$ and the maximum is $-1.7$?

we have $$\\{98.5156,\\{x\to -1.7\\}\\}$$ the maximum and $$\\{-191.993,\\{x\to 0.8762\\}\\}$$ the minimum

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy b39d9ddd7ed9f6f3601a6c0e4b88eb8b