Consider that there are $27$ slots available.
$\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;\Large\boxed{.}\Large\boxed{.}\Large\boxed{.}\;\;$
Andrea can occupy any slot.
To be in the same group, Melissa can choose any $2$ of the $26$ remaining,
and Carol is left with only $1$ choice out of the $25$ left.
$Pr = \dfrac2{26}\dfrac1{25}$