In order to answer the first Question i'll elaborate Randalls (see comments) chosen function
$$ f(x)=\begin{cases} x^2\sin(\frac{1}{x}), & x\
ot= 0 \\\ 0, & x=0 \end{cases}$$
$f$ is differentiable at every point. For its derivative $f'$ we get
$$ f'(x)=\begin{cases} 2x\sin(\frac{1}{x})-\cos(\frac{1}{x}), & x\
ot= 0 \\\ 0, & x=0 \end{cases}$$
which is not continous at $x = 0$.
Proof:
In order to prove $f'$ is not continous for $x=0$, we show the following
$$\exists \varepsilon > 0 \forall\delta > 0\ \exists x \in \mathbb{R} : \vert x-0\vert < \delta \wedge \vert f'(x)-f'(0)\vert > \varepsilon$$
If we choose $x = \frac{1}{n\pi}$ we have
$$ \vert \frac{1}{n\pi}\vert < \delta \Leftrightarrow \frac{1}{\delta\pi} < n $$
which leads us to
$$ \vert f'(x) - f'(0) \vert = \left\vert f'\left(\frac{1}{n\pi}\right)\right\vert = \left\vert 2\frac{1}{n\pi}\sin(n\pi)-\cos(n\pi) \right\vert = \vert 0 \pm 1 \vert = 1 > \frac{1}{2}=:\varepsilon$$
Therefore $f'$ is not continous at $x=0$