Start with the identity $P(U\le a) \le P(V\le a+\epsilon)+P(|U-V|>\epsilon)$ for $\epsilon>0$. Let $a$ be a continuity point of $F_Y$. Then \begin{align} P(X_n\le a) & \le P(Y_n\le a+\epsilon)+P(|X_n-Y_n|>\epsilon) \\\ & \le P(Y\le a+\epsilon+\epsilon')+P(|Y_n-Y|>\epsilon')+P(|X_n-Y_n|>\epsilon) \end{align} So $\lim\limits_{n\to\infty} F_{X_n}(a)\le F_Y(a+\epsilon+\epsilon')$, and since the $\epsilon,\epsilon'$ were arbitrary and $a$ is a continuity point, $\lim\limits_{n\to\infty} F_{X_n}(a)\le F_Y(a)$. The reverse inequality is proven analogously.