Note that: $$z=0\to2+i\implies z(t)=(2+i)t\quad t\in[0,1],t\in\mathbb R\\\\\int\bar z^2dz=\int_0^1 \overline{(2+i)}^2t^2(2+i)dt=(2-i)^2(2+i)/3=5(2-i)/3=10/3-5i/3$$
Note that: $$z=0\to2+i\implies z(t)=(2+i)t\quad t\in[0,1],t\in\mathbb R\\\\\int\bar z^2dz=\int_0^1 \overline{(2+i)}^2t^2(2+i)dt=(2-i)^2(2+i)/3=5(2-i)/3=10/3-5i/3$$