Take $R = \begin{pmatrix} \mathbb{F}_2 & \mathbb{F}_4 \\\ 0 & \mathbb{F}_4 \end{pmatrix}$.
Then $Soc(R_R) = \begin{pmatrix} 0 & \mathbb{F}_4 \\\ 0 & \mathbb{F}_4 \end{pmatrix}$, so $R/Soc(R_R) \cong \mathbb{F}_2$ is boolean, but $Soc(_RR) = \begin{pmatrix} \mathbb{F}_2 & \mathbb{F}_4 \\\ 0 & 0 \end{pmatrix}$, so $R/Soc(_RR) \cong \mathbb{F}_4$ is not.