$$corr(A,B)=\frac{E(A-E(A))E(B-E(B))}{\sigma_A\sigma_B}=c$$ $${E(B-E(B))}=\frac{c(\sigma_A\sigma_B)}{E(A-E(A))}$$ $$A+B({E(B)-B)}=A+\bigg(\frac{c(\sigma_A\sigma_B)}{E(A-E(A))}-B\bigg)B$$
$$corr(A,B)=\frac{E(A-E(A))E(B-E(B))}{\sigma_A\sigma_B}=c$$ $${E(B-E(B))}=\frac{c(\sigma_A\sigma_B)}{E(A-E(A))}$$ $$A+B({E(B)-B)}=A+\bigg(\frac{c(\sigma_A\sigma_B)}{E(A-E(A))}-B\bigg)B$$