You have to transform the yearly interest rate $i$ into an equivalent semi-annual interest rate $i^{(2)}$.
$1+i=q=1.08\Rightarrow \sqrt{1+i}-1=\sqrt{1.08}-1=i^{(2)}$
And $(1+i^{(2)})^{m}=(1+i)^{m/2}$
Therefore the equation is
$$750\cdot 1.08^5\cdot \frac{1.08^5-1}{1.08^{0.5}-1}+(x+750)\cdot \frac{1.08^5-1}{1.08^{0.5}-1}=25,000$$