Alternatively, we have:
* $\operatorname{ord}(a)=|\langle a \rangle$|
* $\langle a \rangle = \\{ a^n : n \in \mathbb Z \\}$
* $\langle a \rangle = \langle a^{-1} \rangle$
Thus, $\operatorname{ord}(a)=|\langle a \rangle| = |\langle a^{-1} \rangle| = \operatorname{ord}(a^{-1})$.
In words: the two sets are either both infinite or both finite of the same size.