Conditional Negation, Distribution, Complementation, and Identity.
$\begin{align} &\
eg (A\to B)\vee(\
eg A\wedge C)\\\\\equiv ~& (A\wedge\
eg B)\vee(\
eg A\wedge C)\\\\\equiv~& (A\vee\
eg A)\wedge(A\vee C)\wedge(\
eg B\vee \
eg A)\wedge(\
eg B\vee C)\\\\\equiv~& \qquad\qquad\quad(A\vee C)\wedge(\
eg B\vee \
eg A)\wedge(\
eg B\vee C)\end{align}$
I am not sure how you figured this would be equivalent to $A\wedge(\
eg B\vee\
eg A)\wedge C$, because it is not.