1. Likely means that for every $a\in F$ there exists $b\in B$ with $\|a-b\|<\varepsilon$.
2. You fix $F=\\{a_1,\ldots,a_n\\}\subset A$ finite and $\varepsilon >0$. By hypothesis there exists $B$ nuclear, and $\\{b_1,\ldots,b_n\\}\subset B$ with $\|a_j-b_j\|<\varepsilon/3$. As $B$ is nuclear there exist $k\in \mathbb N$, $\varphi:B\to M_k(\mathbb C)$, and $\psi:M_k(\mathbb C)\to A$, both completely contractive, such that $\|\psi\circ\varphi(b_j)-b_j\|<\varepsilon/3$ for all $j$. Then, extending $\varphi$ to $A$, $$ \|\psi\circ\varphi(a_j)-a_j\|\leq\|\psi\circ\varphi(a_j-b_j)\|+\|\psi\circ\varphi(b_j)-b_j\|+\|b_j-a_j\|\\\ \leq2\|a_j-b_j\|+\|\psi\circ\varphi(b_j)-b_j\|<3\varepsilon/3=\varepsilon. $$