The notation is a little strange, let me use $\tilde{x}$ for the values corresponding to variable $\tilde{X}$.
In general, for any four random variables, we have:
$$P_{\tilde{X},Y}( \tilde{x},y) = \sum_{x} \sum_{z} P_{X,\tilde X,Y,X}(x,\tilde{x},y,z) = \sum_{x} \sum_{z} P_{X,Y,Z}(x,y,z) P_{\tilde{X} \mid X,Y,Z}(\tilde{x} | x,y,z)$$
Now, in the paper it's asserted that $P_{X,\tilde{X},Y,Z} = P_{X,Y,Z} P_{\tilde{X} \mid Z}$.
That is not true in general. It's true for our variables because (def. 4) **$\tilde {X}$ is generated from $Z$** , so it's reasonable to assume $ P_{\tilde{X} \mid X,Y,Z}= P_{\tilde{X}\mid Z}$
Then
$$P_{\tilde{X},Y}( \tilde{x},y) = \sum_{x} \sum_{z} P_{X,Y,Z}(x,y,z) P_{\tilde{X} \mid Z}(\tilde{x} | z)$$