I think the following are also sub-$\sigma$-algebras:
$$\sigma(A_1\cup A_2),\quad\sigma(A_1\cup A_3),\quad\sigma(A_1\cup A_4).$$
More generally, let $\\{A_1,\ldots,A_n\\}$ be a partition of $\Omega$ and let $S=\hat{\sigma}(A_2,A_3,\ldots,A_n)$ be a $\sigma$-algebra of $\Omega\setminus A_1$.
Then $\sigma(A_1\cup B)$ is a sub-$\sigma$-algebra of $\sigma(A_1,\ldots,A_n)$ for all $B\in S$.
To illustrate, let $n=4$ so that
\begin{eqnarray*} S &=& \hat{\sigma}(A_2,A_3,A_4) \\\ &=& \\{\emptyset,\;\;A_2,\;\;A_3,\;\;A_4,\;\;A_2\cup A_3,\;\;A_2\cup A_4,\;\;A_3\cup A_4,\;\;A_2\cup A_3\cup A_4 \\}. \end{eqnarray*}
The $\sigma$-sub-algebras of $\sigma(A_1,\ldots,A_4)$ then are:
$$\qquad\sigma(A_1),\quad\sigma(A_1\cup A_2),\quad\sigma(A_1\cup A_3),\quad\sigma(A_1\cup A_4),\quad\sigma(A_1\cup A_2\cup A_3),\quad\sigma(A_1\cup A_2\cup A_4),\quad\sigma(A_1\cup A_3\cup A_4),\quad\sigma(\Omega).$$
I think this would apply also to countable partitions.