As $n \to \infty$, $\log \left( \frac{n+1}{n} \right) \simeq \frac{1}{n}$. Hence, by Cesaro theorem, $$ \lim_{n \to \infty} \log \left( \frac{n+1}{n} \right) \sum_{k = 1}^n \sqrt[k]{k} = \lim_{n \to \infty} \frac{1}{n} \sum_{k = 1}^n \sqrt[k]{k} = \lim_{n \to \infty} \sqrt[n]{n} = 1. $$